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Abstract

Various technologies are based on the capability to find small unsatisfiable cores given
an unsatisfiable CNF formula, i.e., a subset of the clauses that are unsatisfiable regardless
of the rest of the formula. If that subset is irreducible, it is called a Minimal Unsatisfiable
Core (MUC). In many cases, the MUC is required not in terms of clauses, rather in terms
of a preknown user-given set of high-level constraints, where each such constraint is a con-
junction of clauses. We call the problem of minimizing the participation of such constraints
high-level minimal unsatisfiable core (HLMUC) extraction. All the current state-of-the-art
tools for MUC- and HLMUC-extraction are deletion-based, which means that they itera-
tively try to delete clauses from the core. We propose nine optimizations to this general
strategy, although not all apply to both MUC and HLMUC. For both cases we achieved
over a 2X improvement in run time comparing to the state-of-the-art and a reduction in
the core size, when applied to a benchmark set consisting of hundreds of industrial test
cases. These techniques are implemented in our award-winning solvers HaifaMUC and
HaifaHLMUC.
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1. Introduction

Given an unsatisfiable CNF formula ϕ, an Unsatisfiable Core (UC) is any subset of ϕ that
is unsatisfiable. The decision problem corresponding to finding the minimum UC is a Σ2-
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complete problem [22]. Finding a minimal UC — a UC such that the removal of any one
of its clauses makes the formula satisfiable — is DP -complete [37]1..

The problem for finding a small, a minimal (irreducible), the minimum (smallest mini-
mal), or all the MUCs has been addressed frequently over the last decade [51, 19, 9, 36, 28,
49, 17, 13, 42, 8, 1, 27, 46, 18, 20, 38, 14, 26, 50, 33, 43, 12, 41, 6, 30, 7, 48, 5, 4, 29, 24, 35, 39]
because of its theoretical and practical importance. The applications of MUC-extraction
include abstraction refinement for model checking [31, 21, 4], formal equivalence verifica-
tion [23, 12] and functional bi-composition [25, 10] — see [43, 34] for extensive surveys.

There are many uses to the core in SAT-based verification, typically related to abstrac-
tion or decomposition. In many cases, however, it is not the core C itself that is being used,
rather C is processed further in order to check which High-level Constraints participate in
the proof, where the grouping of clauses to high-level constraints is given as input to the
problem. Hence, we can assume that in addition to the formula we are given as input a
set of disjoint sets of clauses HLC = {H1 . . . Hm} (High-Level Constraints), where each Hi

is a set of clauses that together encode a high-level constraint. The goal is thus to find a
core C that intersects a minimum number of constraints in HLC. This problem was first
mentioned in [27], where an algorithm that finds all HLMUC-s was suggested, and later
coined the high-level minimal unsatisfiable core problem2. by the first author [34], who ob-
served that in his experiments with industrial problems the number of clauses that belong
to high-level constraints is on average about 5% of the clause database.

Two prominent examples of such techniques that are used in Intel and are described in
more detail in the above reference are:

• A popular abstraction-refinement model-checking is based on iterating between a com-
plete model checker and a SAT-based bounded model checker [31, 21]. The model
checker takes an abstract model, in which some of the state variables are replaced
with inputs, and either proves the property or returns the depth in which it found a
counterexample. In the latter case, this depth is used in a bounded-model checking
run over the concrete model, which may either terminate with a concrete counterex-
ample, or with an unsat answer. In the latter case SAT’s capability to identify an
unsatisfiable core is used for identifying those state variables that are sufficient for
proving that there is no counterexample at that depth. All the clauses that contain a
given state variable (in any time-frame) constitute a constraint in HLC. Those state
variables that participate in the proof define the next abstract model (these are the
state variables that are not replaced by inputs), which is a refinement of the previous
one. The process then reiterates until either the model checker is able to prove the
property or the SAT solver finds a concrete counterexample.

• In formal equivalence verification (see, e.g., [23]), two similar circuits are verified to
be functionally equivalent. This is done by decomposing the two circuits to ‘slices’
which are pair-wise verified for equivalence. The equivalence of each such pair is
verified against various assumptions on the environment. In other words, rather than

1. DP is the class containing all languages that can be considered as the difference between two languages
in NP, or equivalently, the intersection of a language in NP with a language in co-NP.

2. This problem was called Group-Minimal Unsatisfiable Subsets in the 2011 SAT competition — the only
competition so far in this category.
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integrating a model of the environment with the equivalence verification condition,
various properties of the environment are assumed, and added as constraints on the
inputs of that condition. Then, if the equivalence is proven, it is still necessary to verify
that the assumptions are indeed maintained by the environment. Each assumption
is modeled with a set of clauses. The unsatisfiable core obtained when checking the
equivalence is analyzed in order to find those assumptions that were used in the proof.
Hence, here each constraint in HLC is a set of clauses that encode an environment
assumption. Here too the verification process attempts to minimize the HLMUC in
order to minimize the number of environment assumptions that should be verified.

The basic approach taken by all competitive MUC solvers and all HLMUC solvers as
of [34] is deletion-based, which means that they iteratively try to delete clauses from the core
until reaching minimality. This basic idea appeared in the context of linear programming
in [11, 2], and adopted for CNF MUC-extraction in [33, 13]. In the initial approximation
stage the algorithm finds a not-necessarily-minimal UC S with one or more invocations
of a SAT solver [51, 19]. The second minimization stage applies the following deletion-
based iterative process over S’s clauses until S becomes a MUC. Each iteration removes a
candidate clause c from S and invokes a SAT solver. If the resulting formula is satisfiable,
c must belong to the MUC, so c is returned to S and marked as necessary. Otherwise c is
removed from S. For the latter case, it was also proposed in [33, 13] to remove not only c
but all the other clauses in S that were not required for the proof that c is not necessary. In
addition, [33, 13] is using clause-sharing-based incremental SAT solving [45, 47] to speed-up
the algorithm. Modern MUC extractors, HaifaMUC included, are based on this deletion-
based algorithm, and are enhanced by model rotation [30, 6, 5], a technique that we describe
later in Sect. 3.

One needs to keep track of the dependencies between clauses in the system in order to
both extract the initial core at the approximation stage and be able to remove clauses at
the minimization stage and return clauses to the system, whenever necessary. There exist
two approaches to keep track of dependencies:

• Resolution-based. Many modern SAT solvers are capable of producing a resolution
proof in case the formula is unsatisfiable. The approximation stage traverses the
proof backwards from the empty clause, and reports the clauses at the leaves as the
core [51, 19]. In the minimization stage, a candidate clause is temporarily removed
together with its cone in the resolution proof, in order to check satisfiability without
it.

• Assumptions-based. As of Minisat [16], many solvers support the assumptions
technique. Assumptions are literals that are assigned true as the first decisions. The
approximation stage updates every clause with a new selector variable, whose negation
is added to the list of assumptions. At the approximation stage the solver identifies
which of those were required to prove unsatisfiability. The set of clauses corresponding
to these assumptions constitute the initial UC. The minimization stage manipulates
the values of the selector variables to temporary remove or return clauses.

It was shown in [1] that the resolution-based approach is faster than the assumption-based
approach for finding one non-minimal UC, mainly because of the overhead of maintaining
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assumption literals in the assumption-based approach. The deletion-based algorithm for
MUC-extraction can be implemented based on either the resolution- or the assumption-
based infrastructure. Most of the improvements that we will present in this article can also
be implemented in both, although we will only present them in the context of the former.

Contribution. This article merges and extends three earlier proceedings articles [34, 41,
35]. Based on [34], we introduce a deletion-based algorithm for finding a single MUC or
HLMUC. The algorithm uses a single SAT instance for all invocations [15] and can be
either resolution- or assumption-based. Based on [41, 35] we present nine improvements
to the resolution-based MUC and HLMUC problems. Not all of these improvements are
relevant and effective for both, as we will show. In contrast to [35], our presentation of the
algorithm here is in the context of incremental SAT solving, which enables us to present
all the algorithm in this article with a unified view. It gives a comprehensive picture of the
techniques we use in our solvers HaifaMUC and HaifaHLMUC, both of which won the
first place in the SAT’11 competition in the MUC/HLMUC tracks (no such competition
was held since), and to the best of our knowledge are still the fastest available.

In the case of MUC we achieved with HaifaMUC a 55% reduction in run time compar-
ing to MUSer2 [7] and solved 4% more instances, when running on the instances from the
MUC track of the SAT’11 competition (MUSer2 is a deletion-based MUC solver, based on
assumptions. We will describe it in more detail in future sections). In the case of HLMUC,
we experimented with hundreds of industrial examples from Intel, and achieved a 55%
reduction in run time comparing to a basic deletion-based algorithm, and a 28% improve-
ment comparing to the assumptions-based technique described above. The configuration
that achieves these improvements also reduces the core by 73% and 57%, respectively. In
a different set of experiments, this time with the 197 GMUS competition benchmarks and
with an additional optimization (rotation), we witnessed run-time which is 44% less than
that of the latest version of MUSer2. More details on our experiments can be found in
Sect. 4.1.

We begin in the next section by describing a basic deletion-based algorithm for MUC-
extraction, and a variant for extracting HLMUC.

2. Resolution-based MUC and HLMUC

The improvements we consider are relevant to resolution-based core extraction. We im-
plemented inside Minisat 2.2 a rather standard mechanism for maintaining the resolution
DAG. The resolution information is kept in a separate database, which we will call here
the resolution table. This table maintains the indices of the parents and children of each
derived clause. On top of this we implemented the reference counter technique of Shacham
et al. [42]. In this technique every conflict clause has a counter, which is increased every
time it resolves a new clause, and decreased when a child clause is erased. Once the counter
of a clause is 0, it does not need to be maintained any longer for the purpose of later retriev-
ing the resolution DAG. It is removed from the resolution and the counter of the parent
is reduced by 1, which may create a chain of reductions in the resolution graph. In the
experiments that were reported in [42] this optimization led to a reduction by a factor of 3
to 6 in the size of the resolution table.
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The unsatisfiable core is retrieved as usual by backward traversal from the empty clause
to the roots. But since we are interested in minimizing the core, the story does not end
here. Consider the MUC algorithm that appears in Alg. 1. It maintains a set M , initialized
to ∅, which in the end of the algorithm holds a MUC of the input formula. The algorithm
simply iterates once over the set of clauses and checks which can be removed without making
the formula satisfiable. Each time it succeeds in removing a clause c, it resets its starting
point to the new proof in order to accelerate termination. This optimization was introduced
in [33, 13] and called clause-set refinement later in [5].

All the algorithms that we present in this article are geared towards incremental solving,
which is the reason we give the SAT solver a proof π, in the form of a resolution graph
ending with the empty clause, rather than the original formula Ψ. cone(c, π) denotes the
cone of a clause c in π (i.e., the part of Π that is reachable from c. By definition it must
hold c itself and the empty clause ⊥), and core(π) denotes the unsatisfiable core of π,
namely all input clauses that belong to π. We assume that the SAT call SAT returns a
tuple 〈IsSAT, π〉, where IsSAT is the result, and π, in case the result is false (UNSAT),
is a proof of unsatisfiability. We assume that this proof is ‘trimmed’, meaning that it only
includes nodes that can reach the empty clause and the edges between them. Other clauses
that were learned in the solution process are removed.

Algorithm 1 Resolution-based MUC-extraction with clause-set refinement.

Input: Unsatisfiability proof π of Ψ.
Output: A MUC of Ψ.

1: IsSAT := false;
2: M := ∅;
3: while (true) do
4: if (IsSAT ) then
5: M := M ∪ {c};
6: if core(π) = M then break;

7: Choose c ∈ (core(π) \M);
8: 〈IsSAT, π〉 := SAT (π \ cone(c, π)) . cone(c, π) is the cone of c in π

9: return M ;

Let us now shift our focus to the HLMUC problem. We present a basic deletion-based
algorithm for this problem in Alg. 2. The input to this algorithm is a proof π of a formula
Ψ of the form:

Ψ =
∧

Hj∈HLC

Hj ∧ Ω

where HLC = {H1 . . . Hm} is a set of high-level constraints, each of which is a set (or a
conjunction, depending on the context) of clauses, and Ω is a standard CNF formula called
the remainder. The set HLC itself is also an input to this algorithm. The output of the
algorithm is a subset HLC ′ ⊆ HLC such that Ψ′ =

∧
Hj∈HLC′ Hj ∧ Ω is unsatisfiable, and

no constraint can be removed of HLC ′ without making Ψ′ satisfiable.

31



Alexander Nadel et al.

Algorithm 2 Resolution-based HLMUC-extraction.

Input: Unsatisfiability proof π of Ψ =
∧

Hj∈HLC Hj ∧ Ω, and a set HLC.

Output: A HLMUC with respect to HLC and Ω.

1: IsSAT := false;
2: M := ∅;
3: while (true) do
4: if (IsSAT ) then
5: M := M ∪ {Hk};
6: else
7: for (Hi ∈ HLC) do
8: if (Hi ∩ core(π) = ∅) then
9: π := π \ cone(Hi, π);

10: HLC := HLC \ {Hi};
11: if HLC = M then break;

12: Choose Hk ∈ (HLC \M);
13: 〈IsSAT, π〉 := SAT (π \ cone(Hk, π)); . If unsat, π is assigned the new proof

14: return M ;

The algorithm checks the necessity of each constraint in HLC for the proof, either once
or not at all. If it finds it necessary (i.e., without it the formula becomes satisfiable), it adds
it to a set M , which is initialized to ∅. Consider first the case that the formula is satisfiable
(note that this is never the case in the first iteration): in such a case the constraint Hk that
was chosen to be checked (lines 12– 13) is simply added to M in line 5. Now consider the
case that the formula is unsatisfiable, and a constraint Hi that does not participate in the
proof π. The algorithm removes Hi and its cone from π, and Hi from the set HLC. Note
that Hi will never be checked again. Also note that the condition in line 8 is guaranteed
to be satisfied for the recent Hk chosen in line 12, because it cannot be part of the core M
(see line 13). This implies that in the case of UNSAT at least one element is removed from
HLC.

The termination argument is subtle. In each iteration of the main loop, the algorithm
either removes elements of HLC (lines 7–10), or adds an element Hk to M (line 12). In
the latter case Hk is guaranteed to stay in HLC until the end of the algorithm, because by
definition Hk is in the core of every proof and will therefore never satisfy the condition in
line 8. Together with the fact that M is initialized to ∅ (line 2), this guarantees that the
two sets HLC and M are eventually equal, which guarantees termination.

It is interesting to note that Alg. 2 is tailored for HLMUC and not for MUC. The
difference is evident by observing that if a constraint Hi participates in the proof then
its entire set of clauses is retained in subsequent attempts to remove other constraints.
For example, if Hi = {c1, c2}, and only c1 participates in the proof, Alg. 2 retains both
c1 and c2, because removing c2 does not reduce the size of the HLMUC, whereas it may
assist in consecutive iterations. Furthermore, retaining c2 is necessary in order to guarantee
minimality. Without it we may miss the fact that some other constraint can be removed.
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Table 1. The nine optimizations covered in Sect. 3 and their relevance to the two goals MUC and
HLMUC. Optimizations G – I are applicable to only one of the goals (at least in their basic form),
as we explain in the text that describes these optimizations.

Optimization MUC HLMUC MUC-Biased

A. Maintaining partial resolution proofs + +
B. Selective clause minimization + + X
C. Postponed propagation over HLC-clauses + + X
D. Reclassifying HLC-clauses + + X
E. Selective learning of HLC-clauses + + X
F. Selective Chronological backtracking + + X
G. A removal strategy +
H. Eager model rotation + +
I. Path strengthening +

It is not hard to see that Alg. 1 is a special case of Alg. 2, in which every clause is a high-
level constraint. Indeed, in such a case HLC is equivalent to core(π), and the condition
in line 8 of Alg. 2 is equivalent to a clause not being reachable from ⊥. Since we aim at
a uniform presentation of the algorithms for both problems, this observation is important.
We will use the notation HLC to refer to the high-level constraints in case of solving the
HLMUC problem, but the reader should keep in mind that the same algorithm can be used
for MUC-extraction as is, by referring to each clause in the core as a separate set in HLC.

3. Optimizations

In this section we describe nine optimizations to the basic algorithm that was presented in
the previous section. Their relevance to our two goals, MUC and HLMUC, is summarized
in Table 1.3. Most of these optimizations — see the rightmost column in the table —
bias the search towards proofs that use a smaller core or a high-level core. The other
optimizations only shorten run-time. Optimizations A – G were first introduced in [41],
whereas optimizations H,I first appeared in [35].

We will use the following terminology: a clause is an HLC-clause if it either belongs to
one of the initial constraints in HLC or is a descendant of such a clause in the resolution
DAG. Other clauses are called remainder clauses. We say that a literal is HLC-implied if
it is implied by an HLC-clause, and just implied otherwise.

A: Maintaining partial resolution proofs. In this optimization we maintain only
clauses in the cone of HLC-clauses in the resolution table, and the links between them.
That is, we save an HLC-clause, and the parents and children that are also HLC-clauses.
Comparing to full resolution, this reduces the amount of memory required by more than
an order of magnitude in most cases, reduces the amount of time that it takes to find

3. Optimizations E – F apply to both MUC and HLMUC, but experiments show that they have negligible
effect with MUC, which is the reason that they were not reported in our earlier proceedings version [35].
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clauses that are in the cone of an HLC (recall that in line 9 of Alg. 2 HLC-clauses are
removed together with their cones), and, more importantly, allows to activate a certain
simplification (see next paragraph) for remainder clauses, which otherwise has to be turned
off when running Alg. 2.

The simplification we are referring to is applied at decision level 0. If the clause database
includes a unit clause, e.g., (x), then many solvers would remove those clauses that contain
x, and remove ¬x from all other clauses, at decision level 0 (MiniSat is a little different in
this respect: it does not remove ¬x from existing clauses once x is learned, but rather it
does not add ¬x to new learned clauses). This simple, yet powerful simplification has to be
turned off in an incremental setting, as in Alg. 2, or else the connection between the unit
clause and the clauses it subsumed or reduced has to be maintained. The reason is that
(x) may be later on removed, and hence the simplifications have to be undone. Since in
practice this extra book-keeping is not cost-effective, such simplification is typically turned
off in incremental setting. For remainder clauses, however, we can use this simplification,
since we know that these clauses are not going to be removed in future instances, and hence
no extra information needs to be saved.

B: Selective clause minimization. Clause minimization [3, 44] is a technique for shrink-
ing conflict clauses. Once a clause is learnt, each of its literals is tested: if it implies other
literals in the clause, it can be removed.

Example 1 Consider the following clauses:

C1 = (¬v1 ∨ v2) C2 = (¬v2 ∨ v3) C3 = (¬v4 ∨ v5)
C4 = (¬v5 ∨ v6) C5 = (¬v1 ∨ ¬v3 ∨ ¬v4 ∨ ¬v6)

Suppose that the first decision is v1. This decision implies v2 (from C1) and v3 (from
C2). Suppose now that the next decision is v4. This decision implies v5 (from C3) and v6

(from C4) and a conflict in clause C5. Conflict analysis based on 1-UIP returns in this
case a new clause C = (¬v1 ∨ ¬v3 ∨ ¬v4). From C1 and C2 we can see that v1 → v3, or
equivalently ¬v3 → ¬v1, which is an implication between literals in C. Clause minimization
will find this implication by following the resolution DAG and remove ¬v3.

We will not present the full algorithm for clause minimization here, but rather only
mention that it is based on traversing the resolution DAG backward from each literal l in
the learned clause. The hope is to hit a ‘frontier’ of other literals from the same clause that
by themselves imply l. If in this process we hit a decision variable, it means that l cannot
be removed.

Example 2 Continuing the previous example, the algorithm scans each non-decision literal
in C. Consider v3: this literal was implied in C2, and hence we progress to look at the other
literal in that clause, namely v2. This literal was implied by C1 and hence we look at v1.
But since v1 ∈ C, it means that we found an implication within C, and hence ¬v3 can
be removed. Note that the minimized clause can be resolved from the original one and the
clauses that are traversed in the process. In this case

Res(C,Res(C1, C2)) = (¬v1 ∨ ¬v4) .
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The problem with clause minimization in our context is that it may turn a non-HLC-
clause C into a shorter HLC-clause C ′. This can happen if the minimization process uses
an HLC-clause: in that case C ′ has to be marked as an HLC-clause as well. Furthermore,
it can turn an HLC-clause C that depends on a certain set of high-level constraints, into a
shorter HLC-clause that depends on more such constraints. This means that if that clause
will participate in the proof, it will ‘pull-in’ more constraints into the core.

Our suggested optimization is to cancel clause minimization in any case that an HLC-
clause is involved. In other words, we prefer a large clause that depends on a few constraints,
over a smaller one with more such dependencies. The latter may pull more constraints
into the proof, and lead to other such clauses. We aspire, instead, to keep the resolution
table as small as possible and with the fewest connections to HLC-constraints. Ideally we
should check whether using a certain HLC-clause in the minimization process indeed adds
dependencies, but this is simply too expensive: for this we would need to traverse the DAG
backwards all the way to the roots in order to check which constraints are involved.

It is interesting to analyze the behavior of the assumptions-based method with respect
to clause minimization. It turns out that it solves this problem for free, and hence in this
respect it is a superior method. In fact from analyzing various cases in which it performs
much better than the clause-based method (before the optimizations suggested here were
added), we realized that this is the main cause for the difference in run-time, rather than
the facts mentioned in the introduction (the fact that it does not need to save the resolution
table, nor to extract the core in the end of each iteration). How does it solve this problem
for free? Observe that with this technique all HLC-clauses have as literals all the selector
variables that correspond to constraints that were used in deriving that clause. For example,
let H1, H2 be two constraints with associated selector variables l1, l2 respectively. If H1 and
H2 participate in inferring C, then C must contain ¬l1 and ¬l2. This is implied by the
fact that selector variables appear only in one phase in the formula, and hence cannot be
resolved away. Hence the presence of these literals in HLC-clauses is an invariant. If we
falsely assume that a minimized clause C can increase its dependency on constraints, we
immediately reach a contradiction: the supposedly added constraint implies that a new
selector variable was added to C, which contradicts the fact that literals are only removed
from C in the minimization process.

C: Postponed propagation over HLC-clauses. In this optimization we control the
BCP order. We first run BCP over non-HLC-clauses until completion. If there is no
conflict, we propagate a single implication due to an HLC-clause, and run regular BCP
again. We repeat this process until no more propagations are possible or reaching a conflict.
The idea behind this optimization is to increase the chances of learning a remainder clause
rather than an HLC-clause.

The way we implement it is the following: during BCP, every time we discover a new
implication through an HLC-clause (i.e., that clause is the antecedent), instead of adding it
to the assignment stack, we add it to a separate queue called HLCImplicationsQ. When
BCP over the assignment stack ends (without a conflict), then we copy the first element of
HLCImplicationsQ to the assignment stack and reactivate BCP. We continue this process
until either reaching a conflict or HLCImplicationsQ is empty.
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D: Reclassifying HLC-clauses. The SAT call in line 13 of Alg. 2 involves removing
temporarily the cone of an HLC-constraint H. When the result is SAT, we add its clauses
back as remainder clauses, together with all the clauses in its cone that do not depend on
other constraints. To identify this set of constraints, we employ an algorithm in the style
of a least-fix-point computation. We insert all the H clauses into a set S. Then we add all
the children of those clauses that all their parents are in S. We repeat this process until
reaching a fix-point.

Without this optimization H’s clauses are added back as is, with their marking as HLC-
clauses. By adding them back as remainder clauses, we enable more simplifications, such
as propagation of unit clauses at decision level 0 (we described this simplification as part of
optimization A). In fact if a clause is indeed not in any cone of a constraint in HLC, then
it benefits most of the optimization that we describe here to have it marked as a remainder
clause.

E: Selective learning of HLC-clauses. When detecting a conflict, the learned clause
may be an HLC-clause. If all else is equal, such a clause is less preferable than a remainder
clause, as it may increase the HLMUC, in addition to the fact that it leads to a larger reso-
lution table and hence longer run times. We found that learning a non-asserting remainder
clause instead, combined with partial restart, improves the overall performance. The learn-
ing of the remainder clause is essential for termination, and also turns out to decrease run
time. The alternative remainder clause that we learn is even closer to the conflict than the
first UIP. We can learn it only if the conflicting clause is not an HLC-clause; in other cases
we simply revert to learning the HLC-clause. Learning the remainder clause is done by
reanalyzing the conflict graph as if the HLC-implications were decisions. This optimization
is only ran in conjunction with optimizations B and C above, for reasons that we will soon
clarify. Alg. 3 describes the procedure for learning this clause.

Algorithm 3 An algorithm that attempts to find a remainder conflict clause by reanalyzing
the conflict graph as if the HLC-implications were decisions. Returns a remainder clause
if one can be found, and NULL otherwise.

function Get Remainder Clause

1. If the conflicting clause is an HLC-clause then return NULL.

2. Search an HLC-implied literal l in the trail, starting from the latest implied literal
and ending just before the 1-UIP literal.

3. Convert the implication of l into a decision, and update accordingly the decision level
of all implied literals in the trail that come after it.

4. Call Analyze Conflict() with the same conflicting clause, but while referring to
the new decision levels. Let C be the resulting conflict clause.

5. Return C.

Note that the fact that we use this algorithm only when optimization C is active, guar-
antees that the literals searched and updated in steps 2 and 3 are implied by l, i.e., the
fact that BCP was ran to completion on non-HLC-clauses before asserting l, guarantees
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that the rest of the implications at that decision level depend on asserting l. Also note that
the clause learnt in step 4 is necessarily a remainder clause because Analyze Conflict()
cannot cross an HLC-implied literal (such implications were made into decisions), and that
it corresponds to a cut in the implication graph to the right of the first UIP. The reason we
activate this optimization in conjunction with optimization B, is that we want to refrain
from a case in which we learn a remainder clause, but it then turns into an HLC-clause
owing to clause minimization. This is not essential for correctness, however: we could also
have just compared this smaller HLC-clause to the original one and choose between the
two, but our experience is that it is better to give priority to minimizing the number of
HLC-clauses. Finally, note that there is no reason to revert the changes made to the trail,
because backtracking removes this part of the trail anyway.

Example 3 Figure 1 presents an implication graph, where HLC-implications are marked
with dashed edges. The marked 1-UIP cut in the top drawing is calculated while considering
such implications as any other implication. The suggested heuristic is to learn instead a
normal clause, by considering such implications as new decisions, as depicted in the bottom
drawing.

As mentioned earlier, learning the alternative clause is combined with a partial restart.
Let dl be the level to which we would have jumped had we learned the HLC-clause. We
backtrack to dl, but at this point nothing is asserted because we did not learn an asserting
clause. We then move to the next decision level, dl+1, and decide the negation of the original
1-UIP literal. Hence instead of learning an asserting clause and implying the negation of
the 1-UIP literal, we refrain from learning that clause and decide on the same value.

This assignment is neither necessary nor sufficient for preventing the same conflict to
occur. What prevents us from entering an infinite loop in the absence of standard learning
is the fact that we learn at least one clause between such partial restarts. In the presence
of clause deletion, however, this argument generally does not hold, so we cannot guarantee
termination in all cases, although we never witnessed entering a loop in practice4..

We can still argue for termination, however, even in the presence of clause deletion5.:
Our procedure is almost equivalent to the normal sequence of learning an asserting clause,
backtracking to the asserting level dl, performing propagation, and (possibly) erasing the
clause. The only difference is that rather than asserting the literal at dl, we decide its value
at level dl + 1. The termination argument in a normal solver is that we cannot enter a
decision level twice with the same partial assignment (since we backtracked and assigned
at least one variable that was not assigned earlier); here we can make the same argument
about decision level dl + 1, because at that level we decide the 1-UIP literal, whereas its
negation was implied earlier.

Example 4 Referring again to the conflict graphs in Example 3, our solver backtracks to
the end of level 3 — the same level we would have jumped with the original HLC-clause —
progress to level 4 and decides ¬l1.

4. Nontermination is not uncommon in modern solvers. Several solvers combine restarts with a non-
increasing gap and clause deletion, which can lead to nontermination. Entering a loop is extremely rare
in practice, however.

5. For the sake of discussion assume that there are no restarts. Arbitrary restarts combined with clause
deletion can make any solver non-terminating.
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Figure 1. In these conflict graphs, dashed arrows denote HLC-implications, and the dotted
lines denote 1-UIP cuts. In (a), where such implications are referred to as any other implications,
the learned 1-UIP clause must be marked as an HLC-clause, since it is resolved from the HLC-
clause c. We can learn instead a normal clause by taking, for example, the 1-UIP clause in the
conflict graph (b). In that graph, c’s implications are considered as decisions, which changes the
decision levels labeling the nodes.

In our experiments we also tried other decisions (such as ¬l2 in the example above), but ¬l1
seems to work better in practice. We also tried different strategies of updating the scores.
The best strategy we found in our experiments is to update the score according to both the
original and the alternative clause.

F: Selective Chronological backtracking. Recall that optimization E involves a par-
tial restart when learning an HLC-clause. Different heuristics can be applied in order to
choose the backtracking level. Our experiments show that if we only backtrack one level,
rather than to the original backtrack level as explained above, the results improve signif-
icantly. The complete set of data, available from [40], shows that in most instances this
heuristic improves the run time; moreover, it reduces the number of conflicts, which implies
that it improves the search. It seems that the reason for the success of this heuristic is
related to the fact that with the normal backtracking and score scheme we may lose the
connection to the clause that we actually learn, i.e., the scores might divert the search from
a space which is more relevant to the alternative clause that we learn.

G: A removal strategy. Recall that in line 12 of Alg. 2 constraints are removed in an
arbitrary order. We suggest a simple greedy heuristic instead for HLMUC: remove the high-
level constraint that contributed the largest number of clauses to the proof. This heuristic,
as will be evident in the next section, reduces the size of the resulting core but slightly
increases run time.

We also experimented with a heuristic by which we remove the constraint with the least
number of clauses in the proof, speculating that this leaves more clauses in the formula and
hence increases the chance that there will be a proof without this constraint. This option
also improves performance comparing to the arbitrary order with which we started, but is
not as good as the one suggested above. There is an indirect cause behind this difference:
the large constraints (i.e., those that have many clauses) are typically necessary for the
proof regardless of the other constraints, and hence the faster we make them remainder
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constraints — with optimization D — the faster the rest of the solution process is. This,
in turn, affects the size of the core because it leads to less time-outs. As we will explain
in the next section, the result of the algorithm when interrupted by a time-out is the last
computed core, or, in case that even the first iteration does not terminate, the entire set of
HLC-clauses.

H: Eager Model Rotation Model rotation [30, 6, 5] can improve deletion-based MUC-
extraction by searching for additional clauses that should be marked as necessary without
an additional SAT call. Suppose, for example, that for an unsatisfiable set S, S \ c is
satisfiable. Consequently c is marked as necessary. Let h be the satisfying assignment.
Note that h(c) = false, because otherwise h(S) would be true, which contradicts S’s
unsatisfiability. Now, suppose that an assignment h′ that is different than h in only one
literal l ∈ c satisfies all the clauses in S other than exactly one clause c′ ∈ S. Hence
h′(S \ c′) = true, which means that like c, c′ must also be in any unsatisfiable subset of
S, and can therefore be marked as necessary as well. Rotation flips the values of each of
c’s literals one at a time in search of such clauses. When one is found, rotation is called
recursively with c′. This algorithm is summarized in Fig. 2(a). We observe that rotation,
originally proposed in the context of assumption-based MUC-extraction, can be integrated
into our resolution-based algorithm without any changes.

Fig 2(b) shows ermr (Eager Recursive Model Rotation) — an improvement to rotation
that weakens rotation’s terminating condition. The reader may benefit from first reading
the main algorithm in Alg. 4, which calls ermr. The only difference between ermr and
rmr is that ermr may call rotation with a clause that is already in M , the reason being that
it can lead to additional marked clauses owing to the fact that the call is with a different
assignment. Clearly there is a tradeoff between the time saved by detecting more clauses
for M and the time dedicated to the search. For example, one may run rmr with more
than one satisfying assignment as a starting point, but this will require additional SAT calls
to find extra satisfying assignments. ermr refrains from additional SAT calls. Rather it
changes the stopping criterion: instead of stopping when c ∈ M (line 4 in Fig. 2(a)), it
stops when c ∈ K, where K holds the clauses that were discovered in the current call from
MUC. There are other variations on weakening the terminating condition of rotation in the
literature [5, 48]. We leave to future study a detailed comparison of our algorithm to these
works.

Rotation for HLMUC. Rotation and eager rotation are irrelevant in their basic form
to HLMUC, since flipping one literal does not guarantee the satisfaction of the entire set of
clauses in the removed high-level constraint H ∈ HLC. We therefore apply the following
strategy: we find the set of literals in the intersection of all the clauses in H that are
unsatisfied by the current assignment. Flipping the assignment of each of these literals
satisfies H by construction. We then check if it happens to contradict a single high-level
constraint H ′ ∈ (HLC \ H). If yes, then H ′ is necessary and therefore added to M . For
comparison MUSer2 also applies rotation (not eager rotation), but only when a single
clause in H is unsatisfied.

I: Path Strengthening. Path strengthening relies on the following property, which we
call cut falsifiability (observed already in [13, 33]). Let S be an unsatisfiable formula, π its
resolution proof, and c a candidate clause. Then, any model h to S \ cone(c, π) must falsify
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Algorithm 4 Deletion-based MUC-extraction enhanced by eager rotation.

Input: Unsatisfiability proof π of Ψ.
Output: A MUC of Ψ.

1: IsSAT := false;
2: M := ∅;
3: while (true) do
4: if (IsSAT ) then
5: K := {c};
6: M := ERMR(Ψ, c,M,K, h) . h is the satisfying assignment

7: if core(π) = M then break;

8: Choose c ∈ (core(π) \M);
9: 〈IsSAT, π〉 := SAT (π \ cone(c, π)) . cone(c, π) is the cone of c in π

10: return M ;

1: function RMR(S,M, c, h)
2: for all x ∈ V ar(S) do
3: h′ := h[x← ¬x]; . swap assignment
4: if UnsatSet(S, h′) ≡ {c′} ∧ c′ 6∈ M

then

5: M := M ∪ {c′};
6: RMR(S,M, c′, h′);

1: function ERMR(S,M,K, c, h)
2: for all x ∈ V ar(S) do
3: h′ := h[x← ¬x];
4: if UnsatSet(S, h′) ≡ {c′} ∧ c′ 6∈ K

then
5: K := K ∪ {c′};
6: if c′ 6∈M then M := M ∪ {c′};
7: ERMR(S,M,K, c′, h′);

(a) (b)

Figure 2. (a) The recursive model rotation of [6]. Input: S is an unsatisfiable set,M is the current
core, c is the most recent candidate clause (whose removal makes the formula SAT), and h is an
assignment. UnsatSet(S, h′) is the subset of S’s clauses that are unsatisfied by the assignment h′

(b) our modified version. K is a set of clauses that is initialized to c before calling ERMR.K ⊆M
is an invariant, and hence ERMR is called at least as many times as RMR in (a).
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(a) (b)

Figure 3. (a) The clauses in every vertex cut of an unsatisfiability proof must be unsatisfiable,
since together they imply the empty clause (b) consequently, any assignment that satisfies Ψ \
cone(c, π) (the clauses within the dashed polygon) cannot satisfy clauses that appear in all paths
of cone(c, π): otherwise a vertex cut can be satisfied. In this case c and c1 are such clauses. Hence
Ψ \ cone(c, π) is equisatisfiable to Ψ \ cone(c, π) ∪ ¬c ∪ ¬c1.

at least one clause in any vertex cut of cone(c, π), because otherwise a satisfiable vertex cut
in π would exist. Fig. 3 illustrates this property — see caption. An immediate corollary is
that all the clauses in some path in cone(c, π) (i.e., a path from c to ⊥) must be falsified
by any model h to S \ cone(c, π). This implies that a clause that appears in all paths of
cone(c, π) cannot be satisfied by h.

We use this property as follows. Let P = [c0 = c, c1, . . . , cm] be a path in the resolution
proof starting from a candidate clause c. P is the longest unique prefix if it is the longest
path starting at c, such that each ci ∈ P has only one child (that is, c participates in the
derivation of one clause only). Clearly clauses in P participate in any path of cone(c, π),
and we can therefore add their negation when checking Ψ \ cone(c, π). This is called Path
strengthening. Alg. 5 shows a variant of the main algorithm in which path strengthening
has been applied: each invocation of the SAT solver is carried out under the assumptions
¬P = {¬c0, . . . ,¬cm}. Before each iteration our algorithm attempts to increase the length
of P by removing from the resolution proof clauses that are not backward reachable from
the empty clause. Note that whenever P contains clauses which do not subsume c, path
strengthening will provide more assumptions to the solver than redundancy removal [46, 5],
which is implemented in MUSer2. Redundancy removal adds the literals of ¬c (where c
is the candidate clause) as assumptions when checking the satisfiability of S \ c. Observe
that this is a special case of path strengthening. Hence path strengthening is expected to
be more efficient than redundancy removal.

Cut falsifiability-based techniques are not immediately compliant with clause set refine-
ment, since clause set refinement requires solving without assumptions. MUSer2 solves
this problem for redundancy removal by applying clause set refinement only when the as-
sumptions are not used in the proof; otherwise it skips clause set refinement. Our path
strengthening algorithm applies clause set refinement when either the assumptions are not
used in the proof, or the following condition holds (line 10): for a user-given constant N ,
the N latest iterations were UNSAT and used assumptions, i.e., line 10 was reached in the
last N iterations of the loop. This implies that we did not enjoy the benefits of clause set
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Algorithm 5 An improvement of Alg. 4 based on path strengthening. In line 15 the literals
defined by {¬ci | ci ∈ P} are assumptions.

Input: Unsatisfiability proof π of Ψ.
Output: A MUC of Ψ.

1: IsSAT := false;
2: M := P := ∅;
3: while (true) do
4: if (IsSAT ) then
5: K := {c};
6: M := ERMR(Ψ, c,M,K, h) . h is the satisfying assignment
7: else
8: if proof relies on assumptions then . In first iteration the condition is false
9: π := π \ cone(c, π);

10: if condition then . Heuristic. See text
11: 〈IsSAT, π〉 := SAT (π); . guaranteed unsat

12: if core(π) = M then break;

13: Choose c ∈ (core(π) \M);
14: Let P be the longest unique prefix from c;
15: 〈IsSAT, π〉 := SAT (π \ cone(c, π), {¬ci | ci ∈ P}); . Second parameter is a set of

assumptions

16: return M ;

refinement for N iterations, rather we progressed one clause at a time; it is possibly better
to pay the price of an additional SAT call (line 11) for the benefit of clause-set refinement.

Since path strengthening is based on finding a joint prefix of the proof from the removed
clause C, it is not applicable to HLMUC, since in HLMUC we remove multiple clauses
(“roots”) each time, which prevents a joint prefix.

4. Experimental results

We tested the effect of the nine optimizations with hundreds of industrial problems, as
reported next.

4.1 HLMUC experiments

Our tool hhlmuc (for Haifa’s high-level MUC) was built, as mentioned earlier, on top of
Minisat 2.2. It contains the algorithm from Sect. 2 and also the technique of [42] for reducing
the amount of required data in the resolution table by using a reference-counter. On top
of this we implemented the optimizations that were described in the previous section, and
ran all possible combinations (excluding the restrictions mentioned in optimization E, and
excluding optimization H — see below a separate experiment with that optimization), on
the set used in [34] (family ‘lat-fmcad10’ in the tables below), and additional nine families
of harder abstraction-refinement benchmarks from Intel. We removed from the benchmark
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set instances that could not be solved by any of the configurations in the given time-out
of one hour. This left us with 144 benchmarks, all of which are from the two application
domains that were described in the introduction. This set constitute Intel’s contribution to
the benchmarks repository that was used in the SAT competition dedicated to this problem.
The average number of clauses per instance is 2,572,270; the average number of constraints
per instance is 3804; and, finally, the average number of clauses in the high-level constraints
per instance is 96568 (25.3 clauses per constraint), which is approximately 6% of the clauses.
All experiments were ran on Intel R© Xeon R© machines with 4Ghz CPU frequency and 32Gb
of memory.

Table 2 shows run time results for selected configurations.6. The second column (“Base”)
refers to our starting point, namely an implementation of Alg. 2. One may observe that
the best result is achieved when combining the first six optimizations, whereas the seventh
slightly increases the overall run-time.

We also compared our results to assumptions-based minimization. We tried two meth-
ods. In the simple method, a constraint is added to the MUC (line 5 in Alg. 2) by setting
its associated selector variable to true; in the improved method the same effect is achieved
by adding a unit clause asserting this literal to true. Similarly, in the simple method
an environment assumption is removed from the formula (line 9 in Alg. 2) by setting its
associated selector to false; In the improved method the same effect is achieved by adding
a unit clause asserting this literal to false. The improved method is better empirically
apparently because the unit clause invokes a simplification step in decision level 0, which
removes the selector variable and erases some clauses. The results we witnessed with the
two methods appear in the last two columns of the table. Overall the combination of op-
timizations achieve a reduction of 55% in run time comparing to our starting point, and a
reduction of 28% comparing to the assumptions-based method.

All the presented methods can be affected by the order in which constraints are removed
in line 12 of Alg. 2. We therefore tried three different arbitrary removal orders in each case.
Empirically this hardly had an effect on the average run-time when using the resolution-
based methods, whereas it had some effect when using the assumption-based methods. The
table below represents the best overall run times among the different orders we tried (i.e.,
we present the results that together have the minimum run-time). Regarding the size of
the resulting core, the different arbitrary orders had inconsistent effect, as expected, but
the order referred to in optimization G had a non-negligible positive effect on the size of
the core, as will be shown momentarily.

Next, in Table 3, we consider the size of the resulting HLMUC. The configuration that
achieves the best run-time (A–F) achieves the second smallest HLMUC, whereas the second
best configuration in terms of run time (A–G) achieves the smallest core. If a solver timed-
out in our experiments, we considered its latest computed core, i.e., the set M ∪HLC. If a
solver did not finish even the first iteration, then we considered the entire set of clauses in
HLC as its achieved core. This policy, which reflects the way such cores are used, explains
the different results of strategies that are supposed to be equivalent with respect to the size
of the core. For example, the partial-resolution proof optimization (A) does not remove
more clauses than ‘Base’, but since the latter is generally slower, it times-out more times

6. The tool and the full set of results, including a comparison to MUC tools (which does not appear here)
can be downloaded from [40].
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Table 2. Summary of run-time results by family (144 instances all together). ‘fm-d10’ is the
‘lat-fmcad10’ family.

Bench. Resolution-based Assum.-based
family Base A AB ABC ABCE A–E A–F A–G units

latch1 2001 1604 660 465 570 575 425 423 819 798
gate1 3747 1403 705 636 620 579 490 477 856 855
latch2 9113 5915 6636 6116 5685 5656 2424 2370 8153 8043
latch3 348 293 274 274 283 275 262 200 236 236
latch4 769 529 506 457 467 455 443 379 504 521
latch5 1103 820 735 657 678 630 632 625 747 689
fm-d10 785 457 445 451 435 435 400 394 417 425
latch6 8868 5456 5329 5188 5007 5006 4948 4943 5322 5279
latch7 9956 7050 5719 5244 5094 5096 5302 5286 5688 5652
latch8 8223 7946 5673 6133 5459 5420 5127 5587 8004 5534

Total 44913 31473 26682 25621 24298 24127 20453 20684 30746 28032

Table 3. Summary of the size of the HLMUC by family. The ‘TO’ row indicates the number of
time-outs.

Bench. Resolution-based Assum.-based
family Base A AB ABC ABCE A–E A-F A-G units

latch1 41 41 41 41 42 42 41 42 52 45
gate1 1143 1210 1089 568 1029 1029 870 901 618 1192
latch2 5887 2851 127 3040 2851 2851 131 129 3782 4165
latch3 168 202 202 199 211 211 208 123 140 132
latch4 236 237 248 236 238 238 237 162 177 217
latch5 224 266 266 206 206 206 220 222 222 223
fm-d10 577 456 456 489 540 540 453 454 457 450
latch6 2550 2502 2502 2490 2490 2490 2480 2480 2463 2502
latch7 2578 322 585 253 154 154 211 204 304 287
latch8 5591 615 2867 393 344 344 371 373 2887 2877

TO 8 5 3 3 2 2 2 2 6 5

Total 18995 8702 8383 7915 8105 8105 5222 5090 11102 12090

and hence its core count is larger. The ‘TO’ row contains the number of such time-outs
with each configuration.

The effect of rotation (H), and a comparison to MUSer2 We recently conducted
another set of experiments, this time with the 197 GMUS competition benchmarks in order
to compare ourselves to the latest version of MUSer2 and also for checking the effect of
optimization H (eager rotation) which we recently implemented. The experiments were
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Figure 4. Comparing HaifaHLMUC to MUSer2 (Nov. 2014) with the 2011 GMUS competi-
tion benchmarks.

conducted on Intelr Xeonr CPU E5-2670 processors with 2.60GHz CPU frequency and
having 64Gb of memory. The results are:

• HaifaHLMUC with optimization A – G: 28187 sec.

• HaifaHLMUC with optimization A – H: 11483 sec.

• MUSer2 (default configuration, which includes rotation): 20440 sec.

Hence the winning strategy, which is now the default of HaifaHLMUC, is A – H. A detailed
comparison of HaifaHLMUC to MUSer2 can be seen in Fig. 4.

4.2 MUC experiments

We checked the impact of our algorithms when applied to the 295 instances used for the
MUC track of the SAT 2011 competition. For the experiments we used machines with 32Gb
of memory running Intelr Xeonr processors with 3Ghz CPU frequency. The time-out was
set to 1800 sec. The implementation was done in HaifaMUC. We refer to a configuration
of HaifaMUC that implements the deletion-based algorithm with incremental SAT and
clause set refinement as Base. We compare our tool to the latest version of MUSer2 [7] and
Minisatabb [24]. MUSer2 applies the basic deletion-based approach to MUC extraction,
described in Section 2, using assumptions to keep track of dependencies. It enhances the
basic deletion-based approach by rotation and redundancy removal, which we described as
part of optimizations H and I. Minisatabb is an extension of MUSer2: it replaces blocks of
assumptions with new variables and stores the dependencies between them. This technique
is similar in essence to our optimization A (instead of storing resolution information, it
stores these dependencies). In addition, Minisatabb applies clause minimization selectively,
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Table 4. Total run-time in sec. and number of unsolved instances for various solvers, when
applied to the 295 instances from the 2011 MUC competition, excluding 12 instances which were
not solved by any of the solvers (the time-out value of 1800 sec. was added to the run-time when a
memory-out occurred). Base is defined in Sect. 4.2, rot = Base+rotation, erot = Base+eager rotation.
A, B, C, and D correspond to the optimizations defined in Sect. 3. ‘2’ in AB2CD means that the op-
timization was invoked after the 2nd satisfiable result. ‘rr’ refers to redundancy removal combined
with clause set refinement using MUSer2’s scheme, described in Sect. 3. ‘ps20’ means that path
strengthening with N = 20 was applied as described in Sect. 3.

Base rot erot erot erot erot erot erot erot
AD ABD AB2D AB2CD AB2CD rr AB2CD ps20

Time 93931 48018 44335 36295 37798 32968 32918 30800 27263
Unsolved 30 12 10 8 13 8 8 6 4

MUSer2 Minisatabb

Time 59502 40485
Unsolved 17 8

which is similar to our optimization B. Extended experimental data is available from the
second author’s home page.

Table. 4 summarizes the main results. Several observations are in order: 1) rotation is
very useful; 2) eager rotation is effective; 3) optimizations A and D are useful, while opti-
mization B is beneficial only if delayed until the second satisfiable iteration (2 being the opti-
mal value, based on experiments); 4) path strengthening (with N=20, 20 being the optimal
value experimentally) is more beneficial than redundancy removal, and finally 5) Haifa-
MUC, enhanced by all our algorithms, is 2.18x faster than MUSer2 and solves 13 more
instances, and is 48% faster than Minisatabb and solves 4 more instances. HaifaMUC is
faster than Minisatabb on 196 instances, while Minisatabb is faster than HaifaMUC on
15 instances. Fig. 5 compares HaifaMUC to Minisatabb and Fig. 6 shows a cactus plot
comparing Base, MUSer2, Minisatabb and the new best configuration of HaifaMUC.

5. Summary and future work

We presented a basic deletion-based method for finding high-level unsat cores. Earlier
methods were based on retrieving first a minimal core, and then deriving from it a high-level
core, which means that it was not necessarily minimal. We also presented nine optimizations
to MUC- and HLMUC-extraction, although not all apply to both goals. Some of these
optimizations bias the search itself towards a minimal core. These are the main techniques
underlying our tools HaifaMUC and HaifaHLMUC, which are currently the fastest of
their kind.

A straight-forward direction for future research is to migrate some of the suggested
optimizations to the assumptions-based approach. Related SAT problems may also benefit
from these methods. First, it is possible that general SAT solving can be improved with some
combination of optimizations E and F. Second, the same techniques can potentially expedite
other methods in which the SAT component needs to extract only partial information from
the resolution proof, like interpolation-based model checking [32]. In interpolation only a
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Figure 5. Direct comparison of the new best configuration of HaifaMUC erot AB2CD ps20
(X-Axis) and Minisatabb (Y-Axis).

Figure 6. Comparison of Base, MUSer2, Minisatabb, and the new best configuration of
HaifaMUC erot AB2CD ps20. The graph shows the number of solved instances (X-Axis) per
time-out in seconds (Y-Axis) for each solver.

47



Alexander Nadel et al.

small part of the proof is necessary in order to generate the interpolant, so it should be
useful to explore possibilities to minimize that part and decrease the overall run time with
variants of the methods suggested here.
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